

HL7 SURVIVAL GUIDE

2

Executive Summary

HL7 interfacing – while you cannot live without it - it does not need to be the
painful integration experience you might be familiar with, as you work to connect
the systems that make your environment hum along. This guide is meant to help you
get a firmer grasp on the complete set of challenges, standards, and choices you
need to make along the way, whether you are developing interfaces on your own or
working with a third party.

Why You Need our HL7 Survival Guide

Whether you are an Analyst or a Leader serving at a hospital or healthcare provider
organization, HL7 interfacing is likely top of mind. After all, it's what makes it possible
for you to connect the diverse range of systems throughout your environment for
the electronic sharing and retrieval of health information. While the HL7 standard
provides guidance on organizing data, you are likely trying to unravel many
misconceptions about HL7 interfacing. To make matters worse, you are up against
multiple interoperability issues due to Meaningful Use requirements, forcing data
integration among numerous systems. It is no small task keeping pace with all the
HL7 standard developments, issues, and best practices. In fact, you are not facing
this challenge alone: according to Frost and Sullivan, healthcare organizations spend
$1 billion per year addressing system interoperability issues.

We developed this guide to help you take back control and simplify your daily
professional life. Keep this guide handy as you are working on HL7 interfacing, and
you will find that it eliminates many mind-numbing tasks, helping you focus on your
greater mission. Simultaneously, we welcome your feedback to continue improving
this guide, currently being used by thousands of professionals globally. As HL7
interoperability experts, we would love to have a conversation with you. You can
book a virtual meeting with one of our team members here.

To a better healthcare future,

Régis Desmeules, CEO
2900, rue Einstein
Quebec City QC G1X 4B3, Canada
1-877-872-0027
caristix.com
regis.desmeules@caristix.com

https://meetings.hubspot.com/jeanluc-morin/meet-with-jean-luc-morin-caristix
https://caristix.com/
mailto:regis.desmeules@caristix.com?subject=HL7%20Survival%20Guide%20feedback

HL7 SURVIVAL GUIDE

3

Contents
Introduction .. 4

Chapter 1: How to Integrate and Exchange Data .. 6

Chapter 2: The Pros and Cons of Interfacing Capabilities ... 10

Chapter 3: The Heart of the Matter: Data Formats, Workflows, and Meaning 13

Chapter 4: Your EHR Strategy and Working with Vendors .. 17

Chapter 5: Vendors, Consultants, and Interface Specifications 20

Chapter 6, Interfacing Artifacts: HL7 Conformance Profiles and Interface
Specifications ... 23

Chapter 7: Gap Analysis ... 27

Chapter 8: Test Scenarios and Test Systems ... 30

Chapter 9: Message Samples and Test Messages ... 34

Chapter 10 Process and Workflow .. 37

Chapter 11 Maintenance, Troubleshooting, Monitoring ... 40

Chapter 12: Definitions .. 44

Chapter 13: Resources and Contributors .. 51

HL7 SURVIVAL GUIDE

4

Introduction

HL7 Defined
HL7 is a language that enables the standard, consistent, and uniform exchange and
processing of health-related information between the various systems found in
hospitals and healthcare provider organizations. Click over to YouTube to watch
this video for a 3-minute overview of how HL7 works:

https://youtu.be/T6dZOPHe2Jc

Whether they work for healthcare providers and hospitals or state and federal

government agencies, many people who don't deal directly with HL7 think it's

limited to clinical information systems, including those associated with radiology,

labs, and more. But HL7 data is also used in systems used to manage billing,

finances, and any number of other information systems within healthcare. In fact,

the codes used to designate a range of healthcare-related information are, in part,

governed by HL7 and are embedded in HL7 messages.

HL7 Version 2 or 3?
Though HL7 version 3.0 was unveiled years ago, most implementations are done

using HL7 version 2.3 or 2.4 as the base standard. The few implementations we've

seen using version 3 have been limited to government agencies, including Canada

Health Infoway and the US FDA. In fact, adoption is so low for version 3.0 that

many call it a failure. Version 3 is not backward compatible with version 2, works

within a completely different data structure, and requires different tools,

technical skills, and implementation strategies. To avoid a steep learning curve,

we recommend using HL7 version 2. Plus, Meaningful Use Stage 2 specifies HL7

v2.5.1 for lab data.

https://youtu.be/T6dZOPHe2Jc
https://youtu.be/T6dZOPHe2Jc

HL7 SURVIVAL GUIDE

5

3 Main Challenges with HL7
All that said, it's healthy to approach an HL7 interfacing project with a clear idea

of what you're up against. Here are three main challenges we routinely see.

1. Customizable HL7 Format

The HL7 v.2 standard specifies a data structure based on trigger events, segments,

fields, and data types. The recommended structure must account for complex

clinical workflows and data representations, so the standard allows for extensive

customization even when product specifications exist. As a result of the many

variances and adaptations of the HL7 standard, there's no truly standard way that

systems are implemented, and data is handled. In other words, plug and play is

not part of the vocabulary.

2. Configurable and Customizable HL7 Data Tables and Code Sets

The HL7 standard provides a recommended set of data values for transactions.

But they can be customized – and in fact, should be customized or configured

under certain circumstances. Again, this means that data can be handled

differently in each system. Some translation and data mapping would need to

occur during data exchange, so each system sends and receives data it can

understand.

3. HL7 Data Semantics

Good data semantics implies that the meaning or intent of the data – not simply

the data value itself – is exchanged accurately. It's essential for HL7 interfaces to

convey their interpretation of the HL7 standard in use – or confusion will ensue.

It's the difference between NA standing for "Not Applicable" or "No Allergies".

HL7 SURVIVAL GUIDE

6

Chapter 1: How to Integrate and
Exchange Data

Regardless of the HL7 version you choose to for interfacing, the first step is to

define your healthcare integration strategy – will you use a point-to-point

architecture? Do you need an interface engine? What integration capabilities do

you need? Your choice will impact the scoping of your project, so it's critical to

nail down your strategy from the get-go. The key takeaway? Integrating several

systems will require more extensive mapping and configuration than simple

point-to-point architectures.

Interfaces Enable Data Exchange – But Require Development

Effort
Even systems that are 100% HL7-compliant may not be able to exchange data

because each one can use a variety of standard and custom message formats.

These are the data exchange gaps that must be bridged through an interface,

which can translate and manipulate the data. You can handle this manipulation by

hand-coding changes to the messages in a point-to-point interface, or by using a

central Interface engine application. Even then, HL7 interfaces always require

some degree of customization.

Point-to-Point Interfaces
Hospitals, physician practices, and other healthcare provider organizations

typically use several different computer systems for everything from billing and

electronic medical records, to labs and pharmacy management. These systems

need to exchange data with each other. The simplest way to do it is to establish a

point-to-point interface, which is a connection between any two systems that

enable the needed communication. Point-to-point interfaces are designed to

send data from system A to another system B through a custom link (i.e., the

interface) between the two. Because each system recognizes the other's data

format and interface specification (i.e., language and grammar), they understand

each other.

It's worth noting the number of interfaces needed to connect the ecosystem

when using point-to-point interfaces. For example, if a system needs to exchange

HL7 SURVIVAL GUIDE

7

ADT data with three other systems, three interfaces need to be built. In the worst-

case scenario, for an ecosystem featuring N system – all collaborating together

and initiating information exchange – you would end up with (N-1)*N

interfaces. For three systems, that's up to 6 interfaces; for six systems, up to

30. This is discussed in more detail in chapter 2.

Interface and Integration Engines
An interface engine or integration engine is middleware explicitly built to connect

systems. The engine eliminates the need for individual connections between

systems, and orchestrates the message workflow, transforms message formats as

needed, and guarantees message delivery. Integration engines go one step

further than interface engines and simplify system interoperability by enabling

workflow (not simply message) orchestration.

What's the Difference between an Interface Engine and an

Integration Engine?
While interface and integration engines are not exactly the same, they're very

similar and can be difficult to distinguish from one another. The real difference is

in the range of functionality and capabilities supported by each. In fact, they

provide different levels of support for an organization's level of maturity when it

comes to HL7, from zero interoperability and integration (standalone hospital

information systems, for instance) through to full interoperability.

Another way to look at interfacing and integration needs is by comparing trade-

offs between cost and complexity. Point-to-point interfaces are sufficient to get

you going or for getting your feet wet. After all, they don't require a major time or

financial investment. However, as soon as need more than a handful of

interfaces, complexity, and costs increase exponentially (see diagram below).

That's when it becomes more cost-effective to start working with an engine.

HL7 SURVIVAL GUIDE

8

Again, you may find you simply need a plain-vanilla interface engine. But if your

data exchange needs are more complex (i.e., dependent on clinical workflows,

involving multiple systems and/or multiple locations), you probably want to

consider a more sophisticated integration engine. While you won't get away from

complexity with interface and integration engines, you will find they are more

cost-effective for dealing with more complex environments.

Transporting an HL7 Message
HL7 suggests message structure but doesn't specify how to transport those

messages. It's the role of integration engines to translate, mediate, orchestrate,

and route messages. Each interface uses the transport mechanism making the

most sense based on system requirements and limitations, whether LLP, TCP

sockets, FTP, Web services, or email, to name a few.

Each system will use its favorite transport protocol/data exchange protocol. That's

why you need a translator to transport the message in a format each system will

understand. You can build the translator into a point-to-point interface. Or, if

you're using an interface/integration engine, make sure it includes a translator

(most engines do).

Fortunately, interface and integration engines handle message transformation

between systems. In other words, they can pick up a message in a specific format

and create a new message in a new format while retaining the same meaning

across both messages.

However, interface and integration engines stand apart in how they move data.

While a typical interface engine moves information from point A to point B using

a hub-and-spoke model, an integration engine taps into business workflows to

transfer information. In other words, compared to an interface engine, an

HL7 SURVIVAL GUIDE

9

integration engine provides more flexibility and control/visibility over data

semantics.

Questions about integrations? Skip the next chapters and contact us

directly, we'd love to help!

Schedule a meeting with us!

mailto:info@caristix.com?subject=HL7%20Survival%20Guide%20contact
https://meetings.hubspot.com/jeanluc-morin/meet-with-jean-luc-morin-caristix

HL7 SURVIVAL GUIDE

10

Chapter 2: The Pros and Cons of
Interfacing Capabilities

In Chapter 1 of the HL7 Survival Guide, we covered what it takes to exchange

data. To help you make the most suitable choice among interfacing approaches,

we've laid out the pros and cons of each approach or set of capabilities.

 Advantages Trade-Offs
Point-to-
Point

 Get up and running quickly if
you have a few systems
only.

 Small system volume makes
it easier to work with

 Works well and is cost-
effective for fewer than five
healthcare
information/clinical systems
as infrastructure investment
is minimal, and complexity is
reduced.

 Easier to get going quickly
when you're starting from
scratch

 No need for technical
resources; vendors can set
up interfaces

 Harder to grow/evolve
over time because systems
are tightly coupled
together and any change
to one might impacts all
others

 Doesn't scale well since
there will be N(N-1)
interfaces in ecosystem
(e.g., 5 systems – 5(5-1) =
20 interfaces)

 Inflexible – systems must
understand other systems'
expected data structure
and semantics

 Limited monitoring
capabilities

 Costs can grow rapidly if
you rely on vendors to
change or add new
interfaces

 Advantages Trade-Offs
Interfacing
Capabilities

 Mediates transport protocols
between systems

 Scales elegantly to reduce
number of interfaces
required (N + 1)

 Centralizes and facilitates
monitoring of message flows

 Steep learning curve –
need to be well versed in a
specific vendor's
technology to develop
interfaces

 Vendor lock-in can mean
additional costs for

HL7 SURVIVAL GUIDE

11

 and interfaces

 Systems are loosely coupled,
enabling you to add new
interfaces and modify
existing ones without
impacting other systems

 Provides tools and
infrastructure, so interface
adapts to different HL7
message and data formats

 Reduces interface costs by
using single application
capabilities across all
applications

 Reduces dependency on
multiple vendors for changes
to the message format

integration engine
infrastructure, as well as
costly interface engine
technology conversion that
involves large projects
impacting several systems

 Advantages Trade-Offs
Integration
Capabilities

 Includes workflow
management features that
enable the interface to
respond as clinical workflows
evolve and that offer a more
flexible migration path for
systems and ecosystems

 Provides a single point for
system integration to ensure
consistent management

 Built to scale

 More complex and
expensive than smaller-
scale interface engine due
to shortage of skilled
analysts and need for
extensive training

 Expensive software
licenses

 Need to create a
dedicated team (if you
don't already have one)

Vendors of Integration Engines and Technologies
To help you get a jump-start on your research, we've listed some of the major

interface engine providers below. Each of these providers addresses different

needs: while some are best suited to small hospitals, others scale to support

multiple locations and stakeholders, such as for an 80-hospital IDN. Still, other

engine vendors focus on interfacing with EMR solutions (for example, Summit and

Iatric are fairly Meditech focused).

Check out the relevant vendors below and evaluate other players in the market.

Use the grid above to figure out the questions you should ask based on your

organization's needs.

HL7 SURVIVAL GUIDE

12

▪ Cerner Open Engine
▪ Cloverleaf
▪ Corepoint
▪ Ensemble
▪ Iatric EasyConnect
▪ Iguana
▪ McKesson Pathways
▪ Microsoft BizTalk
▪ Mirth Connect / NextGen Connect
▪ Oracle Fusion
▪ Oracle JCAPS/ICAN/e*Gate/DataGate
▪ Rhapsody
▪ Siemens OpenLink
▪ Summit Exchange

Note: This is a partial list. We welcome your suggestions for other vendors you feel

should be added.

Engine Vendor Performance Rankings and Market Share
• For vendor performance rankings, see the KLAS Research website.

• For a current view of the HL7 interface market within healthcare, see the 2018
HL7 Interface Engine Rating survey results published by Core Health Technologies.

https://www.klasresearch.com/search/?q=Interface+Engines
https://www.corehealthtechnologies.com/wp-content/uploads/2018/10/Core_Survey_2018_web.pdf
https://www.corehealthtechnologies.com/wp-content/uploads/2018/10/Core_Survey_2018_web.pdf

HL7 SURVIVAL GUIDE

13

Chapter 3: The Heart of the
Matter: Data Formats, Workflows,
and Meaning

We covered many details about interfacing architecture and data exchange in

Chapter 2. All that said, your main challenges are not with the plumbing, or with

the methods used to transport or route data. In fact, interface and integration

engines handle this quite well.

Interface Engines Don't Address the Real Issue
The real issue is with data formats, workflows, and meaning – and interface and

integration engines don't address these problems. It's quite common for two or

more departments (and by extension, the systems they use) within the same

hospital or IDN to use different definitions and data structures to indicate the

same information, such as "temporary patient."

Consider another example. A physician adds a note "NA" (i.e., Not Applicable) to a

patient's chart indicating that information was never gathered about allergies to

medications. Later on, another physician looks at the patient file, interprets the

NA code as "No Allergies," and orders an antibiotic drug. The patient dies from an

allergic reaction. While this is an extreme case, it's well within the realm of

possibilities. This is why meaning – the semantics of data – is everything.

Here's another scenario. A physician submits a pharmacy order for a pain relief

medication not recognized by the system receiving the order. The order is

dropped, and the patient endures more pain for longer until the situation can be

remedied.

Even the definition of a procedure can vary from one physician or clinician to the

next. If a physician requests a complete blood workup on a patient, but the lab

technician omits some tests because she doesn't consider them to be part of the

order, the doctor will wonder when she will be receiving results for the

outstanding tests. When they never show up, she'll be forced to follow up with

the lab, wasting valuable time for her and her patient.

HL7 SURVIVAL GUIDE

14

Or consider something as simple as date-time data. If you don't specify AM

and PM in your scheduling application, you're going to be continually wasting

time rescheduling appointments set for 8:30 at night when you mean 8:30 in

the morning, for example. The same holds true when you don't account for

time zones, such as data in one system set for MST and the other set for CST.

Data and Information Challenges
The real challenge is at the information level. What information is needed by

whom, when, and in what format? Once you have these answers, you need

to

validate that information being transferred is using the same semantics.

 Issue Example

Data
structure

The HL7 standard specifies a
data structure based on trigger
events, segments, fields, and
data types. The recommended
structure must account for
complex clinical workflows and
data representations.

There might be a gap based on
the maximum length of data
elements. A field in one hospital
system specifies a maximum
length of 50 characters. The same
field in the system under
implementation is set at a
maximum length of 20.

Data
tables

HL7 provides a recommended
set of data values. These can be
modified.

HL7 v2.6 "suggests" six different
values for patient gender.

Data
semantics

Good data semantics implies
that the meaning or intent of
the data is exchanged accurately
– not simply the data value
itself. It's essential for HL7
interfaces to convey their
interpretation of the HL7
standard in use.

Patient identification is the
classic example. It is important to
determine which fields are in use.
Possibilities include: PID-2 Patient
ID, PID-3 Patient Identification
List, PID-18 Patient Account
Number, PV1-19 Visit Number, or
a combination thereof.

Z-
segments

Z-segments are custom message
segments. They are used when
an application must convey
information outside the scope of
the HL7 standard. Development
teams also resort to Z-segments
to work around technical
limitations.

By definition, all Z-segments
result in gaps. If Z-segments
aren't mapped accurately, critical
information can be lost.

HL7 SURVIVAL GUIDE

15

The bottom line is that it's critical to understand the data, the source systems

involved, and how each system handles data semantics. Here are some tips

and questions to help you get at this information.

6 Questions to Help Your Team Understand Healthcare Data
1. Understand the message/interface specification provided by your vendor.

"We are HL7 2.4" is not enough. Ask the vendor to provide details about

messages, segments, fields, the need for z-segments, etc. Also, find out how they

handle data semantics. In other words, what does the data mean? What is it used

for? By extension, understand workflow-related information, event timing,

vocabulary definitions, and who will use the information and how. The examples

we listed above (lab results, two meanings of NA) speak to this.

2. Understand the type of message that will be generated based on the event

(e.g., a patient admission, patient visit, canceling a transfer, sending a partial lab

result). Understand what data is provided with the event, including the various

code sets. Click over to watch this video for a 4-minute overview of an HL7

message:

https://blog.interfaceware.com/understanding-hl7-messages/

And, if you want to have a quick look of all HL7 message types and segments

defined in the HL7 standard, look at the Caristix HL7 Definition website.

https://hl7-definition.caristix.com/v2/HL7v2.5.1

3. How do the code sets and content evolve over time, and who handles the

updates and how?

4. Where does the data go? Is there a need to protect sensitive data?

5. How does the new system manage errors? What happens to messages that

aren't understood by the destination system? What happens to rejected

messages? We all agree that in a perfect world, no piece of information and no

messages would be dropped, but the reality is it that it can and will happen. How

would users and the overall workflow be impacted in such a situation? How can

you mitigate the risk?

https://blog.interfaceware.com/understanding-hl7-messages/
https://blog.interfaceware.com/understanding-hl7-messages/
https://hl7-definition.caristix.com/v2/HL7v2.5.1

HL7 SURVIVAL GUIDE

16

6. How do you handle workflow changes? If it's a matter of adapting the

interface, how is this handled, how much time does it take, what does it cost, and

who pays? You want to avoid Frozen Interface Syndrome, which occurs when you

are trying to implement a new interface and need all participants to switch over

at the same time but can't get their cooperation. Worse yet is Interface Black Box

Syndrome, when you lack full visibility into all the work that has gone into

interface development handled by a third party, making it nearly impossible to

upgrade, tweak, and manage the interface without spending lots of money and

time.

Answers to these questions will help you understand the source and target

systems. This is important for new product implementations (like EHRs and

EMRs). Once you've nailed down these details, you need to pinpoint the

gaps with the receiving system(s), so you can bridge them with an

interface.

Here are some questions you'll need to ask of the vendor and your internal teams

about the receiving system(s).

Make Interfacing

seamless in your

project.

We are offering a 20-

minute consulting session,

entirely free.

Schedule it now!

5 Questions for HIT Vendors and Internal Interfacing Teams
1. Map out the message process or workflow. For instance, if your interface

transfers data from a remote application via FTP, what is the flow? Do

messages start in one application, get routed to an engine, then another

engine, and then finally reach the destination system?

2. Map out the business impacts of the interface. If you make changes to a

patient charge interface, what is the business impact? What if you choose not to

implement the interface? For example, will it result in more manual data entry

for a clinician?

3. What information does the destination system need? Where in the

message structure is the information found?

4. Is the vocabulary used in the destination system different from that used

in the source system?

5. Is all of this information documented? If not, how will the vendor keep you
updated on changes? This is an especially important question to ask vendors since
they simply won't be as responsive two years down the road as they were during
implementation and go-live.

https://blogs.gartner.com/wes_rishel/2012/04/13/the-biggest-healthcare-interop-issue-frozen-interface-syndrome/
https://caristix.com/blog/2012/06/interface-black-box-syndrome/
http://caristix.com/blog/2012/06/interface-black-box-syndrome/
https://meetings.hubspot.com/jeanluc-morin/meet-with-jean-luc-morin-caristix

HL7 SURVIVAL GUIDE

17

Chapter 4: Your EHR Strategy and
Working with Vendors

With Meaningful Use in full swing, chances are your hospital organization is

implementing an EHR or converting to a new system or upgrade. Watch out:

when you implement a new system or migrate from one to another, it can impact

your systems' ability to continue exchanging information. That's why many

organizations call upon third-party vendors for guidance and project assistance.

You just need to make sure you stay in control and avoid hidden expenses as you

work with these vendors. By getting answers to the following interface-related

questions from your clinical system vendor(s), you can maintain the upper hand in

the relationship.

Nine Critical Questions You Need to Ask Your Clinical System

and Interface Vendors

1. "Who provides the hardware, if any?"

When you implement a new EHR or clinical system, validate it doesn't need extra

hardware for data exchange. If it does, find out about any hidden costs associated

with this extra hardware, and who will maintain it (you or the vendor or another

company?). If the vendor or a third party will provide support, what response

times do they guarantee when you report an issue? And how does the vendor

determine who is accountable for issues that arise? For example, if data

exchanges are problematic between the interface and a medication distribution

machine, is the vendor going to help troubleshoot it or offload you to the vendor

of the third-party software?

2. "What standard does your system use for data exchange? HL7? Which HL7

2.x version are you using?"

These questions lay the groundwork for the next one.

3. "Can you supply a list of customizations you made to the HL7 v2.x standard

you are using?"

While most vendors will claim they deviated very little from the standard, you will

probably find they deviate in several ways (custom messages, Z-segments,

customized data types, customized code sets, etc.). The list of customizations will

HL7 SURVIVAL GUIDE

18

help you understand the overall interface and the amount of work required to

integrate with the other systems.

4. "Within your HL 7 2.x based interface, can you tell me which elements and

values are configurable?"

You need the details. If they can't provide details on "configurability," you might be

facing a longer test cycle than anticipated. Trial-and-error interface validation can

slow down implementation.

5. "When you send us the interface spec for sign-off, do we get a fully

documented list of gaps and exceptions for specific data values and data

elements?"

You want a full list, or you'll be facing a lengthy validation process, waiting for

super-users and clinical testers to flag bugs in the test system. Also, if the vendor

doesn't share this knowledge, you are a candidate for the black-box syndrome,

wherein the vendor maintains control of the interface. This limits your flexibility

and ability to negotiate with the provider, and also reduces your capability to

evaluate impacts that a change within the ecosystem might have on this interface

and the systems exchanging data.

6. "Will you provide a list of the interface customizations you create for us?" No

interface specification works perfectly out of the box; it has to be customized to

your environment. You need a list of those customizations for troubleshooting

and maintenance, or your interface analysts will be waiting on vendor trouble

tickets while clinician calls are piling up at the hospital IT help desk.

7. "How do you document changes and upgrades throughout the lifecycle of

the interface? Do you automatically provide us with updated documentation?"

If there's anything worse than missing documentation, it's partial or out-of-date

documentation. What you get at go-live will not be usable two years out. Make

sure the responsibility for documentation updates is clearly spelled out.

8. "Does the interface you built contain any intellectual property?"

This is crucial! Validate if a license will apply to the code, and you will own the

interface – or if the vendor will own it. If the vendor owns it, you might not be

able to change the interface or re-use the code for another, similar interface

project. You will need to engage the vendor for every tweak or a new project,

and that will likely leave you paying big bucks…

HL7 SURVIVAL GUIDE

19

9. "How guaranteed is message delivery? Does each message get an

"acknowledge" (ACK) or "no acknowledge" (NACK) reply?"

This is part of the HL7 standard and is an important piece of the message delivery

process, as you cannot guarantee the message was delivered without it.

3 Bonus Technical Questions
While the following questions may not apply to all systems, be sure to ask them

of the vendor, so nothing is left to chance.

1. "If an application makes an information request, does the replying system

acknowledge that it received the message, or does it just reply?"

In the case of information requests (query messages for instances), the system

will respond with one or several messages containing the information. In most

scenarios, no ACK/NACK is involved as few systems implement Query/Response

messages.

2. "What happens if the replying system does not have the requested

information?"

The response format allows systems to return a message stating no information

was available based on the criteria requested, rather than just sending a reply

with blank fields.

3. "What happens when a message requests data is updated or inserted?" Let's

say the lab system sends results to the EHR, but the patient ID is not recognized at

the EHR – what happens? The role of a message is to publish an event once it

occurs and provide related information. How the information is handled is

system-specific, and in some cases, the system might do nothing. While the

system is responsible for handling the information received, the interface needs

to provide information the system can handle.

Next Steps
After you've assessed high-level clinical system interoperability issues, you need

to actually build and implement the interfaces. That's where the next sections of

the HL7 Survival Guide come in.

HL7 SURVIVAL GUIDE

20

Chapter 5: Vendors, Consultants,
and Interface Specifications

After you've assessed clinical interoperability issues (covered in Chapter 4), you'll

be ready to start building interfaces. If you're building your interfaces in house,

you'll be dealing with clinical system vendors. And if you're outsourcing interface

development, you'll be working with consultants. Either way, you want to know

what issues to avoid. That's where this chapter comes in handy.

Make Sure You Check Off These Boxes
Conduct your due diligence on the following points, and your interface project is

much more likely to run smoothly.

1. Negotiating an Interface

When a hospital buys a clinical system, interoperability and HL7 are usually not

addressed during the negotiation. The vendor's sales rep often glosses over the

requirements and simply mentions the "thousands of interfaces they've got in a

library." The problem is that analysts like you get pulled into the project after the

contract has been executed only to discover it's challenging to interface with the

new system – but you're stuck with making it work. Approach your manager

before the negotiation phase and ask to be involved. By highlighting the issues

that can arise when interoperability and HL7 are not addressed during the vendor

negotiation, you can help avoid lots of project complications and will set you and

your manager up for a smoother, more successful project.

2. Black-box Syndrome

In this scenario, the vendor keeps control of the project and interface, leaving you

to pay for any tweaks or additional needs going forward, including

documentation. Just as painful is the fact that the knowledge walks out the door

when the consultants leave. How do you ensure this doesn't happen? Ask for

documentation, including the interface specification, as part of the contract. This

should detail which systems are linked/interfaced, which messages are

exchanged, and which message formats are used, at a minimum.

HL7 SURVIVAL GUIDE

21

3. Vendor Lock-in

Some interface vendors or consultants introduce their own intellectual property

into the interface. In such cases, your organization has a license to use the

interface, but not full ownership of the interface, which means you need to pay

the vendor for any required changes or updates you'd like to see.

4. Who Drives the Interface Specification?

In the past, the clinical technology vendor would drive the spec, and customers

had to conform to the requirements. Nowadays, the opposite approach is

increasingly common: the hospital drives the spec, and vendors must conform.

While this approach is more expensive initially, down the road, it makes the

process smoother for the hospital, especially as hospitals are increasingly part of

HIEs and merges to form large hospital groups or IDNs. This is good for hospitals

and providers, but you need the right infrastructure (i.e., the right HL7 software

and integration engine, configured to meet your organization's needs) and culture

to support this approach, whether you take care of interface implementation in-

house or outsource it.

5. Supporting Technology

A good integration engine is a great building block, as we mentioned in Chapter 2.

But you also need supporting technology and a culture that help you – and

anyone else who gets involved at any time – manages and updates the engine

and interfaces over time. Look for software and technology that simplify the

process of generating, updating, and managing specifications, requirements, test

scenarios, and other documentation associated with your engine and data

exchange work. You'll also want a repository that provides a central location for

anyone with permission to access the documentation. A detail that may seem nit-

picky at the beginning of a project just might be the essential connectivity

information you need a year later, when an interface goes down at 5 pm, and you

are the Tier 3 support on call.

6. Culture

Your organization's culture and approach can make or break a consulting

engagement or in-house project. Ideally, you want to drive the show with

consultants. Set clear expectations. Control deliverables by coming to clear

agreement as to their definition and due dates. Use your project documentation

from Point 5 above to ensure clarity and accountability throughout the interface

lifecycle. Ensure a structured methodology is used to test the interface. And

clearly define your acceptance criteria for the project.

HL7 SURVIVAL GUIDE

22

Demand These Deliverables
Beyond addressing the issues above, regardless of whether you work with a

vendor or a consultant, ask for these deliverables or interfacing artifacts:

HL7 conformance profiles (also known as profiles or interface specifications).

HL7 profiles should, at a minimum, provide a list of messages, segments

(including z-segments), fields, data types, and typical code sets or data.

Gap analysis between systems to connect. Gap analysis sets the scope of the

interfacing project. Read more about gap analysis in this Caristix white paper.

Test scenarios. Vendors typically provide you with a boilerplate validation guide

to ensure the interface works as expected. But your team needs to ensure that

your organization's clinical workflows are covered. For example, let's say you

have a duplicate patient record in the system. Some hospitals are going to

perform a merge to get rid of the duplicate; others are going to ignore it; and yet

another batch might delete one of the duplicates. But the boilerplate guide might

just say to merge. So make sure the guide covers real-life and specific scenarios

you encounter in your environment.

Test system. Understand how they're going to document test results and don't

sign off on acceptance criteria unless your clinical workflows are covered.

Message samples and test messages. Critical for testing prior to go-live as well as

post-go-live for troubleshooting.

Process and workflow maps. This rounds out your view of your interfacing

ecosystem. Complement the message structure and content details from HL7

profiles with proper processes and workflow maps for future interfacing

asset management.

Once you have a vendor or consultant strategy in place, and you've identified the

artifacts you need, you'll need to start developing the interfaces. The next

chapters walk you through that process.

https://promo.caristix.com/li-whitepaper-offer/

HL7 SURVIVAL GUIDE

23

Chapter 6, Interfacing Artifacts:
HL7 Conformance Profiles and
Interface Specifications

The first five chapters of this Survival Guide have helped you think strategically
about your interfacing project. Now we're going to dive into the nitty-gritty of
what you need in an interface specification and/or HL7 profile (note: we use the
terms specification, conformance profile, and profile interchangeably in this
chapter).

An HL7 interface specification should list:

1. Interface name
How do you refer to your interface in your integration environment? Some

organizations manage thousands of interfaces. If you've got 10 or 20 interfaces,

no big deal. But if you've got thousands, devise a naming system for easy name

recognition and tracking.

2. Source or destination system name and version

System versions (and even product names) change over time. Make sure you've

got a way to track this in your spec.

3. Message types used in the interface

A message type is essentially a trigger event, such as patient admission, lab

request, lab results available, new appointment, etc. How you use and implement

events is completely up to you – it depends on your system and hospital

workflow. Each of the HL7 v2.x reference specifications contains hundreds

of trigger events. Just focus on the ones you need for your interface.

4. Message definitions including segments, fields, data types

You need a list of the segments, fields, and data types used in each message type.

5. Segment and field attributes

These are optionality, repeatability, data type associated with a field, field length,

tables associated with field.

http://caristix.com/blog/2013/02/hl7-survival-guide-chapter-6-hl7-interface-specifications/
http://caristix.com/blog/2013/02/hl7-survival-guide-chapter-6-hl7-interface-specifications/
http://caristix.com/blog/2013/02/hl7-survival-guide-chapter-6-hl7-interface-specifications/

HL7 SURVIVAL GUIDE

24

6. Z-segments

Custom segments, if a vendor or your facility uses them.

7. Data types

Apart from a list of data types, you will also need attributes and customizations.

8. HL7 tables

You need the real-world data or code sets that are actually implemented – such

as gender, race, and lab codes – not what the standard provides. Otherwise, you'll

find yourself wasting lots of time trying to figure out what's really going on in your

system, especially when data such as lab codes change over time. You can solve

this problem by keeping track of the actual data and code sets used, along with

where and how they're used, and the meaning of the information.

9. Specialized interoperability challenges

Without getting all the necessary information upfront (i.e., what we outline in

this chapter), your challenges around interoperability become greater and more

insurmountable. Consider lab interoperability and the example of Logical

Observation Identifier Names and Codes (LOINC) codes – the LOINC dictionary

contains more than 42,000 codes, and some codes mean similar things. That

means two systems exchanging data could refer to that data differently – leading

to confusion and information-exchange problems. Read more about addressing

the challenges of lab interoperability in this Clinical Innovation and Technology

article: Lab Interoperability Plays Catch Up.

Spec = Interface Requirements
Combine the elements above with any necessary clinical or workflow constraints.

This becomes your specification or profile, which is the key interface artifact you

need as you can use this document to compile and validate requirements. Make

sure internal customers and vendors see this. And ask tough questions (including

the ones we supplied in chapters 4 and 5) as you review this spec so you can pin

down the right answers for your environment.

Leverage your interface specifications (and other interfacing artifacts) to generate

your interface code. In most cases, the spec is delivered as a Word document, so

look for tools that will help you connect the spec directly to your interface engine.

http://www.clinical-innovation.com/topics/interoperability/lab-interoperability-plays-catch?page=0%2C0

HL7 SURVIVAL GUIDE

25

How to Develop an HL7 Conformance Profile
To build a profile, you have several options.

Messaging Workbench available via HL7 International (look for a file name that

includes "MWB release") is open-source software designed to build conformance

profiles. But keep in mind, with Messaging Workbench, you need to build out

individual profiles for each message type. If you define 10 message types for an

interface, you'll be building 10 separate profiles. You'll also have to read through

messages to get the information you need.

You can also develop templates in Excel or Word and then populate them

manually. Or you can take advantage of functionality in Caristix software that

automatically creates profiles from HL7 messages. In our world, a profile

corresponds to the spec for a source or destination system, with however many

message types you need.

Regardless of how you develop a profile, you need to do it. The problem is that

there's no industry-standard template available. That's why we've developed this

HL7 profile template kit and made it available to you for download (available as

part of the Caristix HL7 Survival Guide supplementary material). With it, you can

avoid the time and effort to set one up, and make sure you clearly and concisely

communicate what your integration environment expects in terms of data

exchange. Feel free to download the template and tweak it to suit your needs.

Why You Need a Conformance Profile
 Gets analysts, developers, internal customers, vendors, and consultants

on the same page

 Helps identify risks before interface development

 Eliminates time spent determining requirements, testing, and on trial and

error during go-live

 Makes it possible to easily generate your HL7 interface specification, gap

analysis report, and test and validation plan

The Dangers of a Missing Interface Specification
Without an interface spec customized to your requirements, you'll be stuck

implementing a generic interface. If your organization is like most, your clinical

resources are already stretched thin – and the last thing you can afford is to

https://www.hl7.org/special/committees/ictc/docs.cfm
https://promo.caristix.com/hl7-profile-kit/
https://promo.caristix.com/hl7-survival-guide-resource-package/

HL7 SURVIVAL GUIDE

26

dedicate those resources to testing. But that's what you'll find yourself doing if

you go with a generic spec. After all, your interface will likely be buggy when it

goes live because your true requirements weren't gathered up-front. As a result,

you'll find yourself bogged down with extensive troubleshooting after go-live,

especially when you run into issues with clinical workflows because the interface

doesn't work as expected, and clinicians report a lack of data, orders, lab results,

and/or medication as a result.

Don't take any chances – create those profiles. Get started with our HL7 Profile
Kit.(Available as part of the Caristix HL7 Survival Guide supplementary material)

https://promo.caristix.com/hl7-profile-kit/
http://promo.caristix.com/hl7-profile-kit/
https://promo.caristix.com/hl7-survival-guide-resource-package/

HL7 SURVIVAL GUIDE

27

Chapter 7: Gap Analysis

This chapter helps you set up a crucial HL7 requirements document: the gap

analysis. Once you have profiles for your source and destination systems, you

need to capture a list of all the gaps existing between the two systems in a

requirements document. You unearth this list by conducting a gap analysis, which

will tell you what's missing and what needs to be bridged by the interface. In

essence, a gap analysis captures the differences in messaging between the new

system and the existing IT infrastructure so the systems can exchange data (see

the table in Chapter 3 for a list of data and information challenges associated with

gaps). A good gap analysis will also document which system and who (you, the

vendor, or another third party) will handle any issues.

How to Develop an Interface Gap Analysis Document
Many analysts develop their own gap analysis templates in Microsoft Word or

Excel. To fill in templates, they look at messages, run queries when they can, and

manually document their findings. This can be a fairly onerous process if they're

basing the analysis on real-world messages (as opposed to doing a vendor spec

walkthrough). Another option is to take advantage of software that automates

the gap analysis process.

Whatever your approach, you want answers to the following questions so you can

identify gaps related to messages:

1. Does the destination system handle all of the message types from the sending

system?

2. Are there any differences between the message structures in each system? If

so, what are they?

3. Are there any mandatory data elements on one side that are optional on the

other? If so, what are they?

4. Do both systems use the same code sets? Are they the same values? Which

values do I need to map?

5. Do both systems specify the same maximum length of characters for data

fields?

6. What z-segments are in use?

http://caristix.com/blog/2013/02/hl7-survival-guide-chapter-7-gap-analysis/
http://caristix.com/blog/2013/02/hl7-survival-guide-chapter-7-gap-analysis/blog/2012/12/hl7-survival-guide-chapter-3/
http://caristix.com/blog/2013/02/hl7-survival-guide-chapter-7-gap-analysis/blog/2012/12/hl7-survival-guide-chapter-3/
http://caristix.com/blog/2013/02/hl7-survival-guide-chapter-7-gap-analysis/blog/2012/12/hl7-survival-guide-chapter-3/
http://caristix.com/blog/2013/02/hl7-survival-guide-chapter-7-gap-analysis/blog/2012/12/hl7-survival-guide-chapter-3/
http://caristix.com/blog/2013/02/hl7-survival-guide-chapter-7-gap-analysis/blog/2012/12/hl7-survival-guide-chapter-3/
https://caristix.com/hl7-tools/workgroup-edition/hl7-gap-analysis/
http://caristix.com/products/workgroup-edition/why-workgroup/

HL7 SURVIVAL GUIDE

28

7. Is the data semantically consistent? In other words, does the

meaning or significance of an element always match across both

systems?

8. What are the requirements for encryption or de-identification, usage

restrictions, and HIPAA compliance related to confidential

information?

The 4 steps to a gap analysis

Why You Need This Artifact
No interface matters unless those coding the engine can accurately scope the

interfaces they need to build. You need a way to communicate who does what on

an interface. Is the vendor changing a field? Is the interface engine handling the

field transformation? It's critical that you pin all this down before interface

development begins, or you will be wasting time iterating through multiple

changes later in the interface lifecycle.

Business Impact of Missing Gap Analysis

Without a gap analysis that details your requirements, you'll end up

implementing a generic interface that doesn't address your organization's unique

needs. Your end-users will be frustrated that they can't easily access all the

information they need. And you'll end up wasting time, money, and effort

troubleshooting after going live. With a gap analysis, you can avoid extended go-

live periods, significant maintenance at increased cost, and unhappy clinician end-

users who are unable to access the data they need to deliver appropriate patient

care.

HL7 SURVIVAL GUIDE

29

Downloadable Gap Analysis Template
The best course of action? Use this sample gap analysis template to get started on

the right foot! (Available as part of the Caristix HL7 Survival Guide supplementary

material)

https://promo.caristix.com/hl7-interface-gap-analysis/
https://promo.caristix.com/hl7-survival-guide-resource-package/
http://promo.caristix.com/hl7-survival-guide-resource-package/

HL7 SURVIVAL GUIDE

30

Chapter 8: Test Scenarios and
Test Systems

The HL7 interface lifecycle. You need to test during Configuration,

Validation, and Maintenance.

In the last two chapters, we covered some of the requirements-related artifacts

you need. Now it's time for testing, which you conduct at different phases in the

interface lifecycle: during configuration and development; during the formal

validation phase; and during maintenance.

"Why to test?" you ask. When you start to develop and iterate on your interface,

you run tests to avoid introducing new problems – you check and test your code

to make sure not to inject errors. This is true both during interface development

or configuration and while in maintenance mode. This testing helps you

determine whether or not the interface makes sense and meets your

requirements.

Once you're satisfied with the interface, you move to validation testing. This is

when you determine if the interface will work with and meet the requirements of

your clinical workflow. Specifically, you test performance, extreme data cases,

and how well the interface supports large volumes. By figuring this out before go-

http://caristix.com/blog/2013/03/hl7-survival-guide-chapter-8-test-scenarios-and-test-systems/
http://caristix.com/blog/2013/03/hl7-survival-guide-chapter-8-test-scenarios-and-test-systems/

HL7 SURVIVAL GUIDE

31

live, you save a lot of implementation headaches and alleviate the time clinicians

need to spend helping you validate the interface once you go live.

What to Look for in a Test Tool
So that's when and why you should test. But how do you handle this efficiently?

The key is to automate your tests. While you need to spend time during the

development/configuration phase setting up the tests, during the validation

phase, you can take advantage of automation and save a lot of time. In fact, some

interface engines include built-in test tools. Regardless of the source of your test

software, make sure you can do the following:

▪ Be able to connect to web services or a database, such as by calling a web

service, and check in the database after sending a message

▪ Validate inbound and outbound messages
▪ Validate ack and nack
▪ Generate values and test messages from a profile or specification, and

generate a large volume of data/messages if you're conducting volume

testing

▪ Repeat test plans/scenarios, and create reports

What to Test
So what test scenarios should you use? You need to test both normal use cases

and edge cases.

That said, before you can conduct any testing, you must understand what to

expect of your workflows. This should include common workflows – such as a

patient being transferred – involving the use of the products that will be

interfaced. For example, in many hospitals, emergency department and in-patient

ADTs are two separate systems. A new patient that comes through the

emergency department would be registered in the ED's ADT first. And if she is

transferred to Med/Surg, you would need to populate the main ADT, either

through an interface or manually, by re-entering the data.

Or if you're creating an interface to move patient charge data from a surgical

information system to a billing system, you would need test scenarios in which:

 Patient demographics and patient ID are incomplete.

 Billing item information is incomplete.

https://caristix.com/hl7-tools/workgroup-edition/test-hl7-interfaces/

HL7 SURVIVAL GUIDE

32

With that understanding in place, you can test to make sure the interface engine

behaves as expected for standard – as well as unexpected – workflows. When it

comes to edge cases, you'll need to consider more possibilities. For example, if

your interface engine does not accept a certain range or type of data, you'll need

to send such data to it – e.g., date of birth of 1850 or entered in reverse – and

see if the interface triggers an error.

During testing, you're testing the data format and confirming that you're not

introducing errors. When you code an interface, your specification will be based,

at least in part, on sample messages. By definition, you know that these messages

work. So don't use only these sample messages in your texts. Let's say your test

patient in your sample messages is called John Smith – with four characters in the

first name. You test your interface using these sample messages, and everything

works. But three months from now, your hospital admits a patient named

Benjamin O'Donnell, only no one tested for 8 characters in the first name and an

apostrophe in the last name. The interface doesn't like it, and you have a support

call (and a none-too-happy clinician) to handle.

By automating your testing, you will feel freer to test at any time, and you'll be

more confident about making changes because you'll know you can easily test

each time you change the interface as you're coding.

Some vendors provide validation guides full of test scenarios. Use them. But

check through them first – your workflows may differ.

Test Types
Make sure that your tests cover your interoperability requirements, and include

the following:

1. Workflow. Confirm the interface engine handles your standard workflows as

expected.

2. Edge cases: unexpected values. If you're testing birth dates, include 1899 as

well as 2017. Include dates with the month and day reversed. Try different

abbreviations for the days of the week. Check all caps on names. Check accented

names. Check hyphenated last names and those with an apostrophe.

3. Performance, load, and network testing. Though interface developers don't

normally test network infrastructure, you may want to do this during the

validation phase to see how workflows and data are impacting overall

infrastructure performance. A high-volume interface may need more load testing

than a low-volume interface, depending on your interface engine and

connectivity infrastructure.

HL7 SURVIVAL GUIDE

33

4. Individual systems. You should test each system on its own, kind of analogous to

unit testing in software development. For instance, in addition to making sure the

surgical and billing systems handle workflow end to end, make sure they work

separately.

Create a Test System
Once you've developed a test plan and test scenarios, you need to configure your

interface in a test system. It's important that you do this in a test system, not a

production system. It's easy to think it can't hurt to test in a live system, but here

are three reasons why that's a big mistake:

 If you forget to cancel or delete all test transactions once you're through

with testing, you'll end up with faulty transactions in your production

system.

 You run the risk of impacting ePHI or HIPAA-protected health data.

 You don't want phantom data turning up in a CMS audit. Your clinical

systems contain data that constitute a legal record.

So what's the right way to go about it? Set up your test system using the same

configuration as your production system, including the same rights and versions

(it's OK if IP addresses are different). Make sure you upload enough patient data,

and that your tests cover your requirements (we can't say that often enough).

Test Reports
As part of the testing process, you'll want to run reports. The reports should

document the following:

 Number of times the test was run, as well as test duration – if you're

sending messages, this helps you understand performance.

 Test results, including positive validations and failures.

 The messages that were used; note the data source (SQL queries pulling

from a database, an HL7 message feed, a batch file).

 Summary of test scenarios that were run.

Message Player for Basic Listening and Routing
When conducting development testing during the interface configuration phase,

you need a basic listener/receiver tool as you are writing your interface. This

allows you to play/test messages without implementing your interface engine in a

production system. In fact, some interface engines come with a built-in player for

testing. If you don't have one, you can use Caristix Message Player (it's free) to

send or receive messages. Read about how we use Message Player here.

https://caristix.com/hl7-tools/message-player/free-hl7-utility/
https://caristix.com/blog/2013/02/caristix-message-player-software-now-available/

HL7 SURVIVAL GUIDE

34

Chapter 9: Message Samples and
Test Messages

In the previous chapter, we covered what you need to know when testing your

interface. While the right test tool is helpful, you need to feed it the right

message samples and test messages. After all, messages impact the entire

interfacing lifecycle.

So what makes messages "right"? Namely, you need message samples and test

messages that reflect your environment: your ADT message flow, your specific lab

codes, and your case mix – whatever information your interface is intended to

share.

Just as you need sample messages elsewhere in the interfacing lifecycle (for

instance, scoping), you need them for testing, too. (As a reminder, sample

messages give you custom formats, structure, and data values).

For example, imagine you're interfacing LIS and ADT. You'll want to look at the

issues that were highlighted during the gap analysis. Your test messages need to

cover your use cases and the following:

 Events that are exchanged

 Code sets/vocabulary and varying field lengths

 Optional segments and fields, especially varying optionality

Go with Production Data
Now about the sources of your messages: we're going to come right out and say it

– you need production data. Here's why: Once you have the right message

samples and test messages, you need to make sure you have a sufficient volume

of quality test data. And your production data accurately reflects the data you

work with day in and day out, both in data type and format, as well as volume.

And that means you'll be able to accurately test for load and performance, and

avoid message workflow problems that can bring down interfaces.

It All Starts with De-identification
That said, you obviously can't use real production data. You need to find a way to

remove protected health information (PHI). That's where a technique known as

de-identification can help. You keep the clinical workflow in the messages, but

http://caristix.com/blog/2013/03/hl7-survival-guide-chapter-9/
http://caristix.com/blog/2013/03/hl7-survival-guide-chapter-9/

HL7 SURVIVAL GUIDE

35

you remove patient identifiers and replace them with fake values. You can also

replace them with off-the-wall fake values for edge cases.

And remember – even employer information can contain PHI. For instance, if two

of your patients work for say, a 5-person law firm, it would be pretty easy to

search publicly available information sources and re-identify them. You must

remove their employer names – or insert replacement names – if you want to use

this data safely.(For more on de-identification, check out these blogposts.

Here's what to keep in mind when you de-identify your production data:

 Satisfy HIPAA. Remove the 18 identifiers designated by HIPAA as

protected health information (PHI).

 Maintain message flow. If "John Doe" in your production data becomes

"Michael Smith" in your test log, ensure that Michael Smith in your A01

admission message is the same Michael Smith upon discharge.

 De-identify data in z-segments. PHI can hide in z-segments.

 Log volume. Aim for at least a week's worth of messages and ideally a few

months' worths.

 Traceability. Record which data was de-identified and which fields and

data types were transformed.

Without the right message samples and test messages, you'll run into the issues

we discussed in the last chapter, namely lack of updated vocabulary and potential

for downtime if messages contain unexpected values.

Remember, these messages are how you test the data format and confirm that

you're not introducing errors. For example, you don't want to find out after go-

live that your interface doesn't recognize the last name with an apostrophe.

Don't Fall into the Beginner's Trap
If you're just getting your feet wet with clinical and medical applications, you

might think: "What's the big deal? I'll just hit Google for some sample HL7

messages and get started that way."

Don't do that! If you do, you'll get some basic structures right – like pipes and

carets. But you won't have any information about the interface you're trying to

build: the message types it uses, the segments and fields, positions, optionality.

Yet developers need the information in messages in order to build a solid set of

requirements for the actual interface. That's why real-world messages are the

best option.

http://caristix.com/blog/2010/11/de-identifying-patient-data-part-1/
http://caristix.com/blog/2010/11/de-identifying-patient-data-part-1/

HL7 SURVIVAL GUIDE

36

Consider that you're interfacing with a lab system. The lab is often the area of a

hospital with the largest number of custom data values. After all, how you treat a

lab order and lab results vary by hospitals and by vendors. To develop a viable

interface, you need to work with realistic messages.

At the same time, many hospitals employ email security measures that block the

sending of any emails containing HL7-formatted content – even if it is de-

identified. So whatever you find on the Internet is likely to be so generic that it

will be practically useless.

Reach out to one of our experts & join hundreds of professionals
that have accelerated the success of their integrations

Fill a contact form

Send us an email

Book a meeting

https://hl7-offers.caristix.com/contact-us-286/
mailto:info@caristix.com?subject=HL7%20Survival%20Guide%20contact
https://meetings.hubspot.com/jeanluc-morin/meet-with-jean-luc-morin-caristix

HL7 SURVIVAL GUIDE

37

Chapter 10 Process and Workflow

In the last chapter, we explained what to aim for in test messages and message

samples. Next, you need to map out your processes and workflows to understand

how your interface can support them.

For example, your clinical workflow may look like this: a patient is admitted in the

Emergency Department via the departmental ADT system. The doctor on duty

orders lab work, and the patient is admitted to the hospital. The admission is now

recorded as an in-patient in the standard ADT system. The attending doctor

orders medications via the hospital's pharmacy system. The night nurse

administers medications, and records this via the barcode medication

administration. Not satisfied with the patient's progress, the attending doctor

orders new labs and, after receiving the results, decides to perform a procedure,

which requires that the patient be transferred to another location. The doctor's

orders and the transfer are recorded in the in-patient ADT. The patient improves

and is discharged – this event is captured in the same ADT. Finally, thanks to

Meaningful Use, the patient's family doctor receives a discharge summary via the

local HIE.

All of these events comprise a workflow representing a patient stay or visit. While

some workflows are optional, some always happen in a certain way. What's

important is knowing where the data is going and how it's going to be used.

Why You Need to Map Processes and Workflows
If you've documented your workflows and systems, it'll be easier to connect the

next system because you won't need to start from scratch. Workflows also impact

your test plan. For instance, all your destination systems might require different

inputs from a single source system. As part of your scoping and requirements

planning, you'll need to understand the workflow – for instance, who does what:

a physician, a nurse, or a pharmacist? Capturing workflow is also critical for

network monitoring down the road, so, for example, your IT team will know right

away when a system goes down what workflows and processes are affected.

(We'll discuss network monitoring in Chapter 11.)

http://caristix.com/blog/2013/05/hl7-survival-guide-chapter-10-process-and-workflow/
http://caristix.com/blog/2013/05/hl7-survival-guide-chapter-10-process-and-workflow/

HL7 SURVIVAL GUIDE

38

Start with a Spreadsheet?
Many developers list their interfaces and workflows in a spreadsheet. You'll find
examples of what to track in the HL7 Interface Asset Template here. (Available as
part of the Caristix HL7 Survival Guide supplementary material)

While a spreadsheet provides a good start, you need to go beyond to capture the

details and interconnections. After all, in most hospital environments, you'll be

dealing with multiple workflows and systems, meaning your systems will be

exchanging different sets of data. To efficiently and accurately test and manage

all of this over the interface lifecycle, you need a clear mapping of workflows and

processes – something that's nearly impossible to capture in a spreadsheet.

Here's what you should capture when documenting your interfaces and

workflows:

 Interface names

 Systems that are linked

 Connection information (IP address, credentials, port, connection type,

location (location may be by unit or by data center)

 Security: SSL, VPN, firewalls, and any required certificates.

 Trigger events: List all trigger events and note which ones are used by

which systems based on your spec.

 Connection types: could include database, web service, TCP, HTTP, file,

FTP.

Note: here's why it may make sense to note the data center location. Let's say

you run systems out of two data centers for redundancy, one in Skokie, IL and the

other in Hyde Park, IL. If your Skokie, IL data center experiences failures, but your

Hyde Park data center is still operating, you'll know it makes sense to start your

troubleshooting in Skokie.

Consider one workflow in which data entered through an interface is first pushed

to a database, then to an external system through a web service, and finally to

archives or an enterprise warehouse. Without a diagram of this workflow, it's

difficult – if not impossible – to track the data flow. Four months after deploying

your interface, you may find that no data has been pushed to the archives.

https://promo.caristix.com/hl7-interface-asset-template/
https://promo.caristix.com/hl7-survival-guide-resource-package/

HL7 SURVIVAL GUIDE

39

Monitoring Beyond the Interface Engine
Some interface engines let you view workflow within the engine. But what

happens with external systems, such as an HIE transmitting to an internal engine,

or multiple systems from different providers connecting across a region?

Monitoring workflow is a major issue in interoperability – even bigger than

interfacing. You need a way to monitor beyond the engine.

While you can track interfaces and workflow to some extent with spreadsheets

and can use a tool like Visio to diagram it all out, you ultimately need a tool that

maps process and workflow. Such a tool lets you truly grasp your data and

interfaces – not just your interface engine plumbing.

4 Capabilities to Seek Out for Monitoring
 Visualize all of your interoperability assets, from multiple interface

engines to the interfaces themselves.

 Cover the entire interface lifecycle.

 Access a library of interfacing assets and manage assets so you can take

an instant inventory.

 And it should provide all this regardless of the interface engine you're

using

Tips for Artifact Management
Interfacing artifacts can grow over time. You maintain two profiles for your source

and destination system. You conduct a gap analysis, and your engine handles

message transformation. But message transformation is part of workflow. You

need test plans and test data. Keep all these artifacts together and include

workflow. As you develop and implement interfaces, these can grow.

Interface Asset Template: What to Capture
We can't emphasize it enough: profiles and spreadsheets are just a start; in order

to fully cover workflow, you need software to map process and workflow.

Nonetheless, we'd like to help you get started with a baseline spreadsheet. Our

Interface Asset Template is a handy download that will show you what you need

to track.(Available as part of the Caristix HL7 Survival Guide supplementary

material)

https://promo.caristix.com/hl7-interface-asset-template/
https://promo.caristix.com/hl7-survival-guide-resource-package/
http://promo.caristix.com/hl7-survival-guide-resource-package/

HL7 SURVIVAL GUIDE

40

Chapter 11 Maintenance,
Troubleshooting, Monitoring

Now we're coming full circle. Throughout Chapters 6 through 10, we talked about

creating interfacing artifacts, assets, and documentation: profiles, gap analyses,

test plans, test messages, test systems, and workflow maps. In this chapter, we

explain how you can get maximum value from all the work you put into creating

all of those.

Why Document?
By documenting your profiles and specs, you can much more easily troubleshoot

issues and tweak configuration once your interface is live. Plus, if you created

electronic – i.e., machine-readable – versions of your profiles, you can use them in

your monitoring. For example, you could shoot a message through a profile using

the Caristix Message Player to see if there's anything anomalous, such as an extra

segment or a field that is too long. Or you could run problematic messages

against the test scenarios, you developed during the validation phase of the

interface lifecycle.

All that's good and well, but no one can use your profiles and spec unless they're

readily available. So be sure to store them in a central repository for your support

team. Make the files read-only if necessary. What's important is that anyone can

quickly access them when needed.

By using the assets you built in the earlier phases of the interface lifecycle, you

can quickly and proactively address issues and avoid additional costs. Plus, you can

keep users happy. Imagine rapidly troubleshooting an issue to avoid downtime

rather than forcing clinicians to log a help desk ticket because the interface went

down.

Maintenance, Monitoring and Troubleshooting
Another benefit of documenting profiles is that it streamlines processes when

you are performing a system upgrade. Let's say you're changing or upgrading

your pharmacy system – that change affects the interface of any other system

http://caristix.com/blog/2013/05/hl7-survival-guide-chapter-11-maintenance-troubleshooting-monitoring/
http://caristix.com/blog/2013/05/hl7-survival-guide-chapter-11-maintenance-troubleshooting-monitoring/
https://caristix.com/hl7-tools/message-player/free-hl7-utility/

HL7 SURVIVAL GUIDE

41

that communicates with the pharmacy system. Imagine ten different systems

connect to your pharmacy system – you'd need to tweak those ten interfaces.

But you're smart, and you already documented the pharmacy system and the

other systems through the use of profiles/specifications. That means all you need

to do is create a new profile for the new/changed pharmacy system. Then when

you redo the associated 10 interfaces, you will perform a new gap analysis, but

the hard scoping work (those specs) will already be done.

Once your interfaces are in place, you want to monitor them to ensure they're

supporting your processes as designed. The value of monitoring is that it

empowers you to be proactive in troubleshooting issues. You can set up

thresholds and then be alerted to potential issues. For example, you could say

that only a certain number of messages should pass through the system for a

certain process, and if that number is exceeded, you get alerted.

Many interface engines include monitoring capabilities, but some are limited to

that particular engine. If that's all that you have at your disposal, take advantage

of it. But if you have the option and your environment includes multiple interface

engines, look for vendor-agnostic solutions that cover the entire integration

environment. That's the easiest way to get a global overview of your

environment.

Just remember – when you're sharing data across your infrastructure, sometimes

an HL7 message is the problem. But the network or a specific system could also

be the problem. For example, perhaps a nurse does not see orders in the

pharmacy system. This may be because the network is down. Or it could be an

issue with the ADT system or with the medication admin system. Or one HL7

message could be holding up the queue. You want to be able to quickly eliminate

the HL7 message as the issue. Just remember that ideally, your monitoring should

link back to your test cases and interface specifications.

4 Best Practices for Extracting Maximum Value from Your

Artifacts
The fact is that the value of your interface-related artifacts increases over time.

While they're useful for development and go-live, they are essential down the

road, in a year or two or more. Here's how to get the most from these artifacts.

HL7 SURVIVAL GUIDE

42

1. Work with real-world messages.

When you're developing deliverables such as profiles, it's important to start with

real-world messages for the reasons we covered earlier in this chapter on HL7

interface specifications. You will refer back to these deliverables over and over

throughout the interface life cycle. If you start with placeholders or fictitious

information, you'll struggle when it comes time to troubleshoot issues.

2. Share your work. Share your artifacts.

Encourage diligence in documenting all aspects of your interface project. Consider

a common scenario – the interface project wraps up, and a key analyst or engineer

leaves your organization. You want the new employee to be able to easily take

over for the departing employee. And that means having all related

documentation on hand. This practice helps in another way: by documenting

what changes have been made to the interface over time, it's much easier to

quickly troubleshoot any issue. And keep an on-going to-do list, especially around

gap analysis, as this will help you better approach maintenance tasks. And make it

easy for people to share their work and documentation. Use SharePoint, or look

for collaboration functionality in the software you purchase.

3. Archive your work.

Upgrades and updates to the interface engine will happen. You don't want to get

stuck being the victim of Frozen Interface Syndrome, which occurs when you are

trying to implement a new interface and need all participants to switch over at

the same time but can't get their cooperation. You also want to avoid Black Box

Syndrome, when you lack full visibility into all the work that has gone into

interface development handled by a third party, making it nearly impossible to

upgrade, tweak, and manage the interface without spending lots of money and

time. Don't make the mistake of thinking you won't need certain documentation

in the future. In fact, you'll probably re-use it for your next project or for an

interface or system update.

4. Understand content management.

Effective documentation requires that you think beyond message structure and

troubleshooting. You need to think about clinical content and how it changes over

time. For example, lab orders have their own codes, and these codes get updated

over time. You want ready access to the most up-to-date list as needed. And you

need them reflected in your HL7 tables. That means you need to plan from the

start how you'll map the code sets to the right fields and build that into your

interface and the system at go-live.

http://caristix.com/blog/2013/02/hl7-survival-guide-chapter-6-hl7-interface-specifications/
http://caristix.com/blog/2013/02/hl7-survival-guide-chapter-6-hl7-interface-specifications/
http://caristix.com/blog/2013/02/hl7-survival-guide-chapter-6-hl7-interface-specifications/

HL7 SURVIVAL GUIDE

43

To make it all easier for your organization to take full advantage of its interfacing

artifacts, assets, and documentation, download this checklist of what to look for

when you're researching collaboration software. (Available as part of the Caristix

HL7 Survival Guide supplementary material)

https://promo.caristix.com/hl7-survival-guide-resource-package/
https://promo.caristix.com/hl7-survival-guide-resource-package/
http://promo.caristix.com/hl7-survival-guide-resource-package/

HL7 SURVIVAL GUIDE

44

Chapter 12: Definitions

Anonymization
This is another way of saying "De-Identification" (of data). See the definition below.

Code set
Also referred to as HL7, vocabulary or code table. It is a list of codes and their

meanings used to codify information included in HL7 messages. Codes could be

defined by the HL7 standard itself or information systems.

For instance, here is the list of suggested values for patient gender as proposed

by HL7 v2.6

Code Value

M Male

F Female

U Unknown

A Ambiguous

O Other

N Not Applicable

Component

The basic building block used to construct a data type. In the case of complex data

types, each data element is a component.

Example: Patient Family Name (PID.5.1) is a component of Patient Name (PID.5)

Conformance profile

A description of the data and messages that an interface sends and/or receives.

The description covers the data format, data semantics, and acknowledgment

responsibilities. The description must be clear and precise enough so that it can

act as a set of requirements for data exchange.

Data Type

From the Health Level Seven International (HL7) official site: "The basic building

block used to construct or restrict the contents of a data field." In other words, a

data type will describe the format of field data elements (components). Example:

Personal names are constructed using several pieces of information and should

HL7 SURVIVAL GUIDE

45

maintain the same structure across the board. The XPN data type describes such

structure.

De-Identification

De-Identification occurs when all identifiers and quasi-identifiers (IDs, names,

addresses, phone numbers, genders, etc.) are removed from the information set.

This protects patient identity while most of the data remain available for sharing

with other people/organizations, or for related uses.

ER7 encoding

This is a representation of an HL7 message using message, segment, field,

component, and sub-component delimiters. This encoding is usually referred to

as a "pipe delimited" message.

Example:

MSH|^~\&|MegaReg|XYZHospC|SuperOE|XYZImgCtr|20060529090131-

0500||ADT^A01^ADT_A01|01052901|P|2.5

EVN||200605290901||||200605290900

PID|||56782445^^^UAReg^PI||KLEINSAMPLE^BARRY^Q^JR||19620910|M

||2028-9^^HL70005^RA99113^^XYZ|260 GOODWIN CREST

DRIVE^^BIRMINGHAM^AL^35 209^^M~NICKELL’S PICKLES^10000 W

100TH AVE^BIRMINGHAM^AL^35200^^O |||||||0105I30001^^^99DEF^AN

PV1||I|W^389^1^UABH^^^^3||||12345^MORGAN^REX^J^^^MD^0010^UAMC

^L||678

90^GRAINGER^LUCY^X^^^MD^0010^UAMC^L|MED|||||A0||13579^POTTER^

SHER

MAN^T^^^MD^0010^UAMC^L|||||||||||||||||||||||||||200605290900

OBX|1|NM|^Body Height||1.80|m^Meter^ISO+|||||F

OBX|2|NM|^Body Weight||79|kg^Kilogram^ISO+|||||F

AL1|1||^ASPIRIN DG1|1||786.50^CHEST PAIN, UNSPECIFIED^I9|||A

The other allowed encoding uses HL7-XML.

Field

According to Health Level Seven International (HL7), a field is a string of

characters. Fields for use within HL7 segments are defined by HL7. A field is the

basic building block used to construct a segment. By default, fields are delimited

by the "|" character (see the above example) and are built with one or more

components.

Gap analysis

Gap analysis is the phase in a deployment project where analysts map the data

elements between the product they are installing to the elements in the

hospital's existing information systems, therefore, detailing the gaps existing

between the two sources.

HL7 SURVIVAL GUIDE

46

HL7[source]

HL7 is an international community of healthcare subject matter experts and

information scientists collaborating to create standards for the exchange,

management, and integration of electronic healthcare information.

The name "Health Level-7" is a reference to the seventh layer of the ISO OSI

Reference model, also known as the application layer.

Hospitals and other healthcare provider organizations typically maintain many

different computer systems for everything from billing records to patient tracking.

All of these systems should communicate with each other (or "interface") when

they receive new information, but not all do so. HL7 specifies a number of flexible

standards, guidelines, and methodologies by which various healthcare systems

can communicate with each other. Such guidelines or data standards are a set of

rules that allow information to be shared and processed in a uniform and

consistent manner. These data standards are meant to allow healthcare

organizations to easily share clinical information. Theoretically, this ability to

exchange information should help to minimize the tendency for medical care to

be geographically isolated and highly variable.

HL7-XML encoding

This is a basic XML representation of an HL7 message where XML elements

represent HL7 messages constructs like segments, fields, and components. The

other allowed encoding is ER7.

Example:

<ADT_A01>

<MSH>

<MSH.1>|</MSH.1>

<MSH.2>^~\&</MSH.2>

<MSH.3>

<HD.1>MegaReg</HD.1>

</MSH.3>

<MSH.4>

<HD.1>XYZHospC</HD.1>

</MSH.4>

<MSH.5>

<HD.1>SuperOE</HD.1>

</MSH.5>

<MSH.6>

<HD.1>XYZImgCtr</HD.1>

</MSH.6>

<MSH.7>

<TS.1>20060529090131-0500</TS.1>

</MSH.7>

https://www.hl7.org/index.cfm

HL7 SURVIVAL GUIDE

47

<MSH.8 />

<MSH.9>

<MSG.1>ADT</MSG.1>

<MSG.2>A01</MSG.2>

<MSG.3>ADT_A01</MSG.3>

</MSH.9>

<MSH.10>01052901</MSH.10>

<MSH.11>

<PT.1>P</PT.1>

</MSH.11>

<MSH.12>

<VID.1>2.5 </VID.1>

</MSH.12>

</MSH>

<EVN>

<EVN.1 />
<EVN.2>

<TS.1>200605290901</TS.1>

</EVN.2>

…

</EVN>

<PID>

…

</PID>

…

</ADT_A01>

HL7 v2.x Message (source)

HL7 version 2 defines a series of electronic messages to support administrative,

logistical, financial, and clinical processes. The v2.x standards are backward

compatible (e.g., a message based on version 2.3 will be understood by an

application that supports version 2.6).

HL7 v2.x messages use a human-readable (ASCII), non-XML encoding syntax based

on segments (lines) and one-character delimiters. Segments have composites

(fields) separated by the composite delimiter. A composite can have sub-

composites (subcomponents) separated by the sub-composite delimiter, and sub-

composites can have sub-sub-composites (subcomponents) separated by the sub-

sub-composite delimiter. The default delimiters are vertical bar or pipe (|) for the

field separator, caret (^) for the component separator, and ampersand (&) for the

subcomponent separator. The tilde (~) is the default repetition separator. The

first field (composite) in each segment contains the 3-character segment name.

Each segment of the message contains one specific category of information. Every

message has MSH as its first segment, which includes a field that identifies the

message type. The message type determines the expected segment names in the

message. The segment names for a particular message type are specified by the

segment grammar notation used in the HL7 standards.

https://en.wikipedia.org/wiki/Health_Level_7#HL7_version_2.x
https://en.wikipedia.org/wiki/Backward_compatibility
http://en.wikipedia.org/wiki/Backward_compatibility
https://en.wikipedia.org/wiki/ASCII
https://en.wikipedia.org/wiki/XML
https://en.wikipedia.org/wiki/Line_%28text_file%29
https://en.wikipedia.org/wiki/Delimiter
https://en.wikipedia.org/wiki/Field_%28computer_science%29

HL7 SURVIVAL GUIDE

48

Sample of a v2.2 message with customized segments:
MSH|^~\&|MegaReg|XYZHospC|SuperOE|XYZImgCtr|20060529090131-

0500||ADT^A01^ADT_A01|01052901|P|2.5

EVN||200605290901||||200605290900

PID|||56782445^^^UAReg^PI||KLEINSAMPLE^BARRY^Q^JR||19620910|M
||2028-9^^HL70005^RA99113^^XYZ|260 GOODWIN CREST

DRIVE^^BIRMINGHAM^AL^35 209^^M~NICKELL’S PICKLES^10000 W

100TH AVE^BIRMINGHAM^AL^35200^^O |||||||0105I30001^^^99DEF^AN

PV1||I|W^389^1^UABH^^^^3||||12345^MORGAN^REX^J^^^MD^0010^UAMC

^L||678

90^GRAINGER^LUCY^X^^^MD^0010^UAMC^L|MED|||||A0||13579^POTTER^

SHER

MAN^T^^^MD^0010^UAMC^L|||||||||||||||||||||||||||200605290900

OBX|1|NM|^Body Height||1.80|m^Meter^ISO+|||||F

OBX|2|NM|^Body Weight||79|kg^Kilogram^ISO+|||||F

AL1|1||^ASPIRIN DG1|1||786.50^CHEST PAIN, UNSPECIFIED^I9|||A

HL7 v3 Message

V3 is the latest version of the HL7 message standard. It is not backward

compatible with the v2.x standard. Instead, it implements a completely new top-

down design approach based on the Reference Information Model (RIM) for

better consistency and extensibility. HL7 v3 messages are XML documents

exchanged between systems. Tags are defined through a suite of modeling

mechanism. We see some adoption of this message standard around Clinical

Document Architecture (CDA). However, most systems continue to exchange data

using v2.x messages.

Integration engine

Middleware built specifically to connect systems by using a standard messaging

protocol. The integration engine is responsible for mediating protocols,

orchestrating message workflow, transforming message formats, and

guaranteeing message delivery.

Integration engines simplify system interoperability by allowing message feed

management. In other words, you don't need to manage a system-to-system

connection. Instead, messages are sent to the integration engine. Messages will

be forwarded to any system(s) meant to receive those messages. If needed,

transformation can be applied so a message is translated to the expected

message format.

Interface

Hospitals and other healthcare provider organizations typically maintain many

different computer systems for everything from billing records to patient tracking.

All of these systems should communicate with each other (or "interface") when

HL7 SURVIVAL GUIDE

49

they receive new information, but not all do so. HL7 specifies a number of flexible

standards, guidelines, and methodologies by which various healthcare systems

can communicate with each other. Such guidelines or data standards are a set of

rules that allow information to be shared and processed in a uniform and

consistent manner. These data standards are meant to allow healthcare

organizations to easily share clinical information. Theoretically, this ability to

exchange information should help to minimize the tendency for medical care to

be geographically isolated and highly variable

Integration as a Service

Based on the SaaS model, this is a delivery model where a provider provides all

required infrastructure to interface systems. Usually, instead of charging for

licenses and hardware, the provider will charge per message.

Message

A message is the atomic unit of data transferred between systems. In the HL7

world, it comprises a group of segments in a defined sequence. Each message has

a message type that defines its purpose. For example, the ADT Message type is

used to transmit portions of a patient's Patient Administration (ADT) data from

one system to another. A three-character code contained within each message

identifies its type.

Optionality

According to Health Level Seven International (HL7), optionality refers to whether

the field, segment or segment group is required, optional, or conditional in a

segment.

Point to point

Direct integration between two systems where system A and system B directly

exchange information without an intermediate system or middleware.

Pseudonymization

This process replaces data-element identifiers and quasi-identifiers with new data

elements so that the relationship to the initial object is replaced by a completely

new subject. After the substitution, it is no longer possible to associate the initial

subject with the data set. In the context of healthcare information, we can

"pseudonymize" patient information by replacing patient-identifying data with

completely unrelated data. The result is a new patient profile. The data continues

HL7 SURVIVAL GUIDE

50

to look complete, and the data semantics (the meaning of the data) is preserved

while patient information remains protected.

Repeatability

According to Health Level Seven International (HL7), repeatability refers to

whether the segment or field may repeat. The value set is the maximum number

of allowed occurrences; if unspecified, there is only one occurrence, i.e., it cannot

repeat.

Segment

A segment is a logical grouping of data fields. Segments of a message may be

required or optional. They may occur only once in a message, or they may be

allowed to repeat. Each segment is given a name. For example, the ADT message

may contain the following segments: Message Header (MSH), Event Type (EVN),

Patient ID (PID), and Patient Visit (PV1).

Two or more segments may be organized as a logical unit called a segment group.

A segment group may be required or optional and might or might not repeat. As

of v 2.5, the first segment in a newly defined segment group will be required to

help ensure that un-parsable messages will not be inadvertently defined. This

required first segment is known as the anchor segment.

Sub-Component

The basic building block used to construct a component. In the case of complex

data types using complex data type as components, each data element of the

component is a sub-component. Example: Patient Own Surname (PID.5.1.1) is a

sub-component of Patient Name (PID.5)

Trigger event

Health Level Seven International (HL7) defines a trigger event as "A real-world

event creating the need for data to flow among systems. For example, the trigger

event a patient is admitted may cause the need for data about that patient to be

sent to a number of other systems. The trigger event, an observation (e.g., a CBC

result) for a patient is available, may require that observation to be sent to a

number of other systems. When the transfer of information is initiated by the

application system that deals with the triggering event, the transaction is termed

an unsolicited update."

HL7 SURVIVAL GUIDE

51

Chapter 13: Resources and
Contributors

Resources

• Checklist: Collaboration Software for HL7 Integration *

• For vendor performance rankings, see the KLAS Research website.

• For a current view of the HL7 interface market within healthcare, see the

2018 HL7 Interface Engine Rating survey results published by Core Health
Technologies.

• For more on de-identification, check out these blogposts.

• Frozen Interface Syndrome: Wes Rishel of Gartner weighs in on this

interoperability issue

• How to automate your tests.

• How to figure out if you suffer from Interface Black Box Syndrome

• Messaging Workbench available via HL7 International (look for a file

name that includes "MWB release")

• Read more about addressing the challenges of lab interoperability in this
Clinical Innovation and Technology article: Lab Interoperability Plays
Catch Up.

https://promo.caristix.com/hl7-collaboration-software-checklist/
https://www.klasresearch.com/search/?q=Interface+Engines
https://www.corehealthtechnologies.com/wp-content/uploads/2018/10/Core_Survey_2018_web.pdf
https://www.corehealthtechnologies.com/wp-content/uploads/2018/10/Core_Survey_2018_web.pdf
http://caristix.com/blog/2010/11/de-identifying-patient-data-part-1/
https://caristix.com/blog/2010/11/de-identifying-patient-data-part-1/
https://blogs.gartner.com/wes_rishel/2012/04/13/the-biggest-healthcare-interop-issue-frozen-interface-syndrome/
https://caristix.com/hl7-tools/test/hl7-testing-tool/
https://caristix.com/blog/2012/06/interface-black-box-syndrome/
https://www.hl7.org/special/committees/ictc/docs.cfm
https://www.clinical-innovation.com/topics/interoperability/lab-interoperability-plays-catch?page=0%2C0
http://www.clinical-innovation.com/topics/interoperability/lab-interoperability-plays-catch?page=0%2C0

HL7 SURVIVAL GUIDE

52

Samples, Templates and Tools

• HL7 profile template kit *

• Sample gap analysis template *

• Software that automates the gap analysis process

• Use Caristix Message Player (it's free) to send or receive messages. Read

about how we use Message Player here.

*Available as part of the Caristix HL7 Survival Guide supplementary
material

White Papers

Conformance Checking for HL7: Ensuring Messages are Understood by Healthcare

– white paper by Lyniate

https://www.lyniate.com/knowledge-hub/conformance-checking-hl7/

Rethinking HL7 Integration: Start with the Gaps – white paper by Caristix

https://promo.caristix.com/li-whitepaper-offer/

https://promo.caristix.com/hl7-profile-kit/
https://promo.caristix.com/hl7-interface-gap-analysis/
https://caristix.com/hl7-tools/workgroup-edition/hl7-gap-analysis/
https://caristix.com/products/message-player/free-hl7-utility/
https://promo.caristix.com/hl7-survival-guide-resource-package/
http://promo.caristix.com/hl7-survival-guide-resource-package/
https://www.lyniate.com/knowledge-hub/conformance-checking-hl7/
https://promo.caristix.com/li-whitepaper-offer/

HL7 SURVIVAL GUIDE

53

Contributors

Authors

Sovita Chander

Jean-Luc Morin

Invaluable contributions from two members of the Caristix software development

team, Dominic Bérubé and Maxime Dupont.

Great comments and feedback from:

Eric Mosley

Jens Kristian Viladsen

Eliot Muir

Commenters on LinkedIn in the following groups:

Health Level 7 Group

HealthCare Information Technology

Healthcare-IT/HER/HIS

HIStalk Fan Club

HL7

HL7 International

Mirth HL7 Network

HL7 SURVIVAL GUIDE

54

About Caristix

We believe that better integration of healthcare systems means a healthier society.

Caristix software was designed to address your most painful and common needs.

It provides an alternative to manually addressing HL7 interfacing projects.

The average US hospital runs up to 100 IT applications. Not a single one of them

can share patient information out of the box. So, hospitals and vendors turn to

data interfaces – 50 to 100 of them in an average hospital. Each interface can take

months of painstaking manual work to set up.

Caristix has developed a software suite to automate manual interface work. Our

software reads HL7 data and outputs a list of interface requirements. As a result,

Caristix software can reduce months of work to a few days. Reduce interface

deployment time by 50%, reduce hospital testing time by 75%, and cut interface

maintenance time by 90%.

Learn more at www.caristix.com.

Follow Us
twitter.com/caristix

linkedin.com/company/caristix

caristix.com/blog

Contact Us
2900, rue Einstein
Quebec City QC G1X 4B3
Canada

1-877-872-0027

caristix.com
info@caristix.com

Copyright © Caristix 2020. All rights reserved.

HL7 and Health Level Seven are registered trademarks of Health Level Seven
International. Use of HL7 copyrighted materials is governed by HL7
International's IP Compliance Policy.

https://caristix.com/
https://twitter.com/caristix
https://www.linkedin.com/company/caristix/
https://caristix.com/blog/
mailto:info@caristix.com

	Executive Summary
	Introduction
	Chapter 1: How to Integrate and Exchange Data
	Chapter 2: The Pros and Cons of Interfacing Capabilities
	Chapter 3: The Heart of the Matter: Data Formats, Workflows, and Meaning
	Chapter 4: Your EHR Strategy and Working with Vendors
	Chapter 5: Vendors, Consultants, and Interface Specifications
	Chapter 6, Interfacing Artifacts: HL7 Conformance Profiles and Interface Specifications
	Chapter 7: Gap Analysis
	Chapter 8: Test Scenarios and Test Systems
	Chapter 9: Message Samples and Test Messages
	Chapter 10 Process and Workflow
	Chapter 11 Maintenance, Troubleshooting, Monitoring
	Chapter 12: Definitions
	Chapter 13: Resources and Contributors

